
Page 1 of 7 

Electric Circuits Laboratory 
ENGR 250L - LAB EXERCISES 

 

LAB 10  -  ARDUINO LED & PING (.5 lec + 1h) 

 

UNO
ARDUINO

1
3 1
2

~
1
1

~
1
0

~
9 8 7
~
6 ~
5 4

~
3 2 1 0

T
X


R
X


I
O

R
E

F

R
E

S
E

T

3.
3V 5V V
i
n

A
0

A
1

A
2

A
3

A
4

A
5

DIGITAL   (PWM~)

ANALOG INPOWER

A
R
E
F

G
N
D

GND

TX

RX
ON

AT Mega 328
Micro-controller

Analog In
Pins (0-5)Voltage In

Ground Pins

Reset Pins
3.3V Power Pin

5V Power Pin

In-Circuit Serial
Programmer

USB Plug

External
Power supply

Analog Reference Pin
Digital Ground Digital I/O Pins (2-13)

Serial In (Rx)

Serial Out (Tx)

Reset
Button

2.1 mm inner
5.5 mm outer

7-12V

 
 
Micro-controllers are computers that are designed to sense and control things in the physical world.  They can 
be used to turn lights on/off, run motors, sense sound, light, acceleration, etc.  The Arduino platform has 
become popular in the hobbyist and academic communities. 
 
We will program Arduino to control the lighting of an LED.  This exercise is a good introduction to controlling 
the input/output (I/O) pins on Arduino.  Arduino - like any other computer - can be used to change the behavior 
of a machine through simple changes to the programming code.  This is why so many things are controlled by 
computers now. 
 
REFER to the ARDUINO GUIDE (Ch 1 - Intro, Ch 2 - Arduino IDE software, Ch 3 - I/O signals, pwm) 
REFER to the C PROGRAMMING GUIDE 
 
PARTS LIST 

1. Arduino, cable, computer  4. 220-ohm resistor 
2. Breadboard shield   5. wire 
3. LED     6. Ultra-sonic "ping" sensor (HC-SR04) 
 
 

10.1 BLINK SURFACE-MOUNTED LED 
 
Here we get the "surface mounted" (built onto the board) LED (connected to pin 13) to blink on and off.  
This exercise only requires the Arduino board and cable. 
 



Page 2 of 7 

LED blinking is often the first and simplest exercise with a micro-controller.  This is done by changing 
digital pin 13 (HIGH or LOW).  Although this is a simple exercise, the basic process of controlling the 
Arduino input/output is fundamental and forms the basis for more advanced tasks. 
  
IMPORTANT 
All Arduino programs must have 2 functions: setup and loop 
"setup" is done first and once.  "loop" is done after that and it repeats forever. 
In digital electronics LOW means 0V and HIGH means 5V 

 
CODE 

 
// 1_Blink.ino ---------------- 
// Blink LED on Arduino (pin 13) repeatedly 
 
int ledPin = 13; // specify pin 
 
void setup()   // done once 
{ 
  pinMode(ledPin, OUTPUT);  // set pin as output 
} 
 
void loop()  // done repeatedly 
{ 
  digitalWrite(ledPin, HIGH);  // LED on 
  delay(300);     // hold it for this many ms 
  digitalWrite(ledPin, LOW);  // LED off 
  delay(300);     // hold it 
} 
 
// end ----------------------------------- 
 
 

FOLLOW UP 
 

Alter the delay times (change the number in the delay ( ) function) and observe the changes in the blinking 
LED.  Make the LED blink faster and then record the result.  This demonstrates how software can easily alter 
the behavior of hardware. 
 

OUTPUT 
 

The surface mount LED should blink repeatedly.  The blinking rate should change as you make changes to 
the delay time. 

 
 
 
 
 
 
 
 
 
 
 
 
 



Page 3 of 7 

10.2 BLINK EXTERNAL LED 

13 12 ~11 ~10 ~9 8 7 ~6 ~5 4 ~3 2 1 0

RST 3.3V 5V Vin A0 A1 A2 A3 A4 A5

AREF

RESET

gnd

GND

G
N
D

5
V220-Ohm

R

LED

cathode - has shorter
wire & flat spot
on rim - hooked
to GND

Arduino w/ Bb
shield on top

 
 

We've blinked the surface-mounted LED.  Now we'll blink an external LED so we'll need a breadboard onto 
which to build the circuit.  We'll use a "BREADBOARD SHIELD".  Shields are circuit boards that mount on 
top of the Arduino and add to its capability.  A breadboard shield simply provides a breadboard while pulling 
up the Arduino pins for easy access. 
 
NOTE 
 
Always build and modify circuits with power disconnected. 
NEVER create short circuits (connecting different voltage values directly. eg - 5V and GND). 
GND - is usually the (-) side of power supply. 

 
CIRCUIT 

 
The figure shows the Arduino with a BREADBOARD SHIELD that gets assembled on top of the Arduino. 
A Bb shield simply provides a breadboard on which to build a circuit, and it pulls up the I/O connections for 
easy accessibility. 
The programming code MUST match the physical circuit (e.g., the specified pins). 
The LED must be inserted in the correct direction (cathode closer to GND). 
The 220-ohm resistor (red-red-brown) in series with the LED limits current in LED to about 20 mA. 

 
CODE 

 
// 2_externalLED.ino --------------------------- 
// blink an external LED  
 
int ledPin = 3; // led pin - must match physical connections 
 
// duplicate the code from first exercise 
 
// end -------------------------------------------- 

 
OUTPUT 

 
The external LED should blink repeatedly just like the surface-mounted LED. 
 
 



Page 4 of 7 

10.3 BRIGHTNESS 
 

Now let's get the LED to step through a series of brightness changes, and when done, cycle back again.  You 
could change LED brightness by changing the voltage applied, but Arduino does not have analog output 
capability.  Instead, Arduino has so-called PULSE-WIDTH MODULATION (or PWM).  In reality the LED 
is blinking, but it's blinking so fast our eyes and brain interpret this as a dimmed LED. 
 

CIRCUIT 
 
There is NO CHANGE from previous exercise. 

 
CODE 

 
// 3_Brightness.ino ------------------------------------------- 
// Make LED change brightness 
 
int ledPin = 3;  // pwm pin 
int ledLevel = 0; 
int duration = 500;  // time at ea level (alter this) 
int noLevels = 5;  // pwm 0-255, (alter this) 
 
void setup() 
{ 
  pinMode(ledPin, OUTPUT); 
} 
   
void loop() 
{ 
  long tnow;  //get current time 
  ledLevel = 0; 
 
  for (int i = 1; i < noLevels; i++) 
  { 

  analogWrite(ledPin, ledLevel); 
  ledLevel += (255/noLevels); 
  delay(duration); 

  } 
} 
 
 
// end ----------------------------------------- 
 

 
OUTPUT 

 
The external LED should increase in brightness in steps. 
After achieving max brightness, it should turn off and then repeat. 
Try changing the duration and the number of brightness levels. 

 
 
 
 
 
 
 
 



Page 5 of 7 

 
10.4 PING DISTANCE 

Vcc
Trig

Echo
Gnd

  

Ping sensor

13 12 ~11 ~10 ~9 8 7 ~6 ~5 4 ~3 2 1 0

RST 3.3V 5V Vin A0 A1 A2 A3 A4 A5

AREF

RESET

gnd

GND

G
N
D

5
V

GND
+5V

220-Ohm
R

LED

cathode - has shorter
wire & flat spot
on rim - hooked
to GND

trigger

echo

 
 

In this exercise we will obtain distance data from an ultrasonic "PING" sensor.  Later we will use the 
distance data to drive the brightness of an LED and the movement of a small servo motor.  The use of sensor 
data to drive actuators is the basis for robotics and control systems. 
 

BACKGROUND 
 
ULTRA-SONIC "PING" SENSORS sense distance by sending out an ultrasonic pulse (at 40 kHz, which you 
can't hear) of sound and measuring the time it takes for that sound pulse to be received back.  Distance can 
be inferred from the time it takes for the pulse to be received.  This sensor is commonly included in many 
Arduino kits.  While the two cylindrical parts look like eyes or speakers, they are not.  One is an ultrasound 
transmitter, and the other a receiver.  There are 2 popular sensors on the market.  One is by Parallax called 
the "PING" sensor ($30).  The other is the HC-SR04 ($4).  The PING sensor is more expensive but it works 
better with smaller targets and only uses 1 I/O pin.  The HC-SR04 has more erroneous signals with smaller 
targets and uses 2 I/O pins.  I will refer to theses sensors as "PING SENSORS" from now on, even though 
you may be using the HC-SR04. 

 
Vcc   5 VDC  
Frequency  40 kHz 
Range   2 cm to 4 meters 
Accuracy  +/- 3 mm 
Target size  > 0.5 m2.   
Echo pulse  150 us - 25 ms (38 ms if no object is detected) 

 
The ping sensor will generate an 8-cycle ultra-sonic (at 40 kHz) burst (or pulse) in response to a 10 us 
(microsecond, which is one millionth of a second) pulse on the trigger pin.  The receiver will wait to receive 
the reflected sonic burst and the sensor will return a pulse on the echo pin that is equal to the time elapsed 
between transmit and receive (in micro-seconds, us). 
 
Watch this informative video: 
https://www.youtube.com/watch?v=ZejQOX69K5M 
 
The statement below 
 
distance = duration * 0.0343/2; 



Page 6 of 7 

 
computes distance traveled by sound which travels .0343 at cm/us.  You divide by 2 because sound is 
traveling twice the distance you want to display (pulse goes out, reflects off a surface, and returns to the 
sensor).  The code will return distance in cm.  
In this exercise the ping sensor will sense distance to an obstacle (your hand or a piece of cardboard) placed 
in front of it, and Arduino will display the result (in cm) on the serial monitor (or plotter). 
 
The ping sensor will sometimes output erroneous data (distance displays an unreasonably large value).  This 
is often happens with small targets.   If we are using the distance data to control, for instance, a motor, then 
we need to do something about this error.  Otherwise the motor will not move as desired.  One approach is 
save the data point from the last time through the loop.  If the data point gathered in the current loop seems 
erroneous (too big), then use the last good data point. 
 
Also we will create the function "getDistance()".  We will place the code for reading the ultrasonic sensor in 
this function.  This is how you should organize computer code. 
 

CIRCUIT 
 
Do not remove the LED circuit.  Just add the ping sensor circuit. 
The ping sensor has 4 connections: power (5v), ground, trigger, and echo.  Trigger will be hooked to an I/O 
pin that sets off the measurement.  Echo is hooked to an I/O pin that records the time measured. 

 
CODE 

 
// 4_pingDistance.ino ---------------- 
// display distance (in cm) on SM using ping sensor, correct for erroneous data 
 
const int trigPin = 7; 
const int echoPin = 4; 
 
long duration; 
int distance; 
int distanceLast = 0; 
int distanceCap = 400; 
 
void setup() 
{ 
  pinMode (trigPin, OUTPUT); 
  pinMode(echoPin, INPUT); 
  Serial.begin(9600); 
} 
 
void loop() 
{ 
  distance = getDistance(trigPin, echoPin); 
  Serial.print(distance); 
  Serial.println(" cm"); 
} 
 
int getDistance(int trigPin, int echoPin) // --------------- 
{ 
  digitalWrite(trigPin, LOW); 
  delayMicroseconds(2); 
  digitalWrite(trigPin, HIGH); 
  delayMicroseconds(10);      // send out 10 us pulse 
 
  duration = pulseIn(echoPin, HIGH);   // get echo signal 



Page 7 of 7 

  distance = duration * 0.0343 / 2;  // compute distance 
 
  if (distance > distanceCap)   // if get bad data pt 
  { 
    distance = distanceLast;    // use last good data pt 
  } 
  else     // good data pts 
  { 
    distance = constrain(distance, 2, 40);  // constrain distance: 2 - 40 cm 
    distanceLast = distance;      // update last good value 
  } 
 
  return distance; 
} 
 
// end ------------------------------------------------------ 
 

 
OUTPUT 

 
As an obstacle is moved closer and farther from the ping sensor, the distance should be displayed on the 
serial monitor.  Also try using the serial plotter which should plot the distance in real time. 

 
 
 
 


